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In this article we describe the use of the multi-factor multi-commodity (MFMC) model in 

determining the optimal location for shipping a cargo, specifically the delivery of LNG. The 

MFMC model is able to capture the complex movements in forward prices that are difficult to 

capture using a single factor model, as well as correlations between different commodities. 

Such models can be used for a wide range of energy pricing and risk management tasks. 

These include spread option pricing, power plant valuations, and for the calculation of value-

at-risk or earnings-at-risk type metrics for portfolios covering multiple commodities. The MFMC 

model is well suited to this type of analysis since it involves consideration of the commodity 

price at a number of locations, and we can consider each of these prices as describing separate 

but correlated commodities. For this example modeling the correlation is a key component 

since we would expect the price of the same commodity at different locations to be reasonably 

highly correlated. For this article we will simplify the problem to highlight the use of the MFMC 

model, and note that in reality a number of other factors dealing with the potential constraints 

and logistics of cargo transportation would also need to be considered. 

 

Suppose a commodity can be shipped and sold to one of N different locations. The solving of 

the optimal location problem involves determining which location should be chosen in order to 

maximize the revenue for the holder of the flexibility. We refer to the price received for the 

commodity at a particular location as the reference price, which can be calculated as a linear 

combination of prices for that commodity at different locations, and may include other 

variables such as shipping costs. In the simplest case the reference price will be defined by a 

single commodity price. For example, if we deliver the LNG cargo to the US Gulf Coast the 

reference price may be simply defined as the NYMEX price for Henry Hub. However, if the 

cargo could be “split” at the destination and delivered to two nearby nodes with different spot 

prices the reference price may be a combination of the commodity prices at these different 

reference points. The reference price can be thought of as the net payoff (per unit volume) for 

the cargo at the destination. We define the optimum decision as the one which leads to the 

maximum payoff at the time of delivery of the cargo. One approach to determine the optimum 

location is to simulate the reference prices for the required locations using a MFMC model, and 

then determine which one has the greatest expected value. 

 

Let 

),( TtFj  be the forward price for commodity j (j = 1,…,M) at time t and for maturity at 

time T; and 

)(TS j be the spot price for commodity j at time T; 
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We define the reference price mi(T) for location i (i = 1,…,N) to be 

 

 ( ) ( )∑
=

=
M

1j

TSwTm
ji,ji

 (1) 

 

where wi,j represents the user defined weights of each commodity price. 

  

The quantity mi(T) defines the price that would be received if the cargo was delivered to 

location i at time T and sold at the prevailing spot prices. Let h be the lead time between the 

decision date and the delivery date (T) at the destination. Of course, at time T - h when the 

decision is made we do not know what the spot prices in equation (1) will be, but our 

expectation of the spot price is given by Fj(T - h, T). We therefore define the expected value of 

the reference price with lead time h as 

 

 ( ) ( )∑
=

=
M

1j

* , T-h, TFwThm
ji,ji

 (2) 

 

Therefore, in order to generate the reference price levels we must simulate the forward curve 

until time T-h to determine the forward price for maturity at time T. To simulate the forward 

curve, recall from our previous Masterclass that the forward curve dynamics for each 

commodity can be written in discretized form as the following; 
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,2
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where ),(, kij tt τσ +  is the ith (i = 1,…,n) volatility function for the jth commodity, and ijz ,∆ is the 

corresponding random shock. For each time t that the simulation is performed we use equation 

(3) to generate the prices for a discrete set of relative maturities, kτ , which typically represent 

the monthly points on the forward curve that cover the duration of the deal and where t∆  is 

chosen such that the discretized equation is a sufficiently good approximation to the 

continuous time model. Typcially t∆  would be one day for this type of application where gas 

prices are being considered. If we were modeling a more volatile commodity price, such as 

power, then the time step would generally be reduced to one hour. 
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In order to simulate the forward prices using this model the following inputs are required: 

- an initial forward curve at time t for each commodity, that is, the set of prices 

),(,),,(),,( 10 Njjj ttFttFttF τττ +++ K , 

- the volatility functions ),(, kij tt τσ + , and 

- the correlation matrix between the different factors and different commodities. 

 

The initial forward curve is generally obtainable as the latest available market quotes with the 

last two items typically estimated as described in our previous article. Note that the simulation 

involves generating multivariate normally distributed random numbers to capture the 

correlated Brownian increments, ijz ,∆ . The standard procedure to do this is to first generate a 

set of univariate normally distributed random numbers using a standard algorithm such as the 

Box-Muller method1. Then we require the Cholesky decomposition, L, of the correlation 

matrix, R, that is  

 

 
T

LLR =  (4) 

 

Having obtained L the set of appropriately correlated multivariate random numbers can be 

obtained by multiplying the univariate random numbers by the matrix L. 

 

The basic algorithm to determine the optimum decision for shipping the cargo can therefore be 

summarized as follows: 

1. Using equation (3), and starting from the current date, t, we simulate the monthly 

forward prices for each commodity until the decision date, i.e., T – h. Using these 

forward prices we evaluate the expected values of the reference prices, ( )Thmi ,*
, via 

equation (2). 

2. The optimum location is chosen as the one with the maximum reference price. We 

denote the index of this location as iMAX, and the expected payoff is given by  

 

 ( ) ( ) ( )[ ]ThmThmThm NiMAX
,,,,max, **

1

*
K=  (5) 

 

 

 

                                                

1 See section 4.11 of Clewlow and Strickland [1998] for a discussion of generating standard normal random 
numbers 
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3. The forward curve simulation continues as until the delivery date, T. The simulated 

forward price at time T for maturity T is simply the spot price, i.e., )(),( TSTTF jj = , 

and so we can calculate the actual payoff which is ( ) ),0(* TmTm
MAXMAX ii = . 

 

4. The above 3 steps are repeated for M simulations (e.g., M = 10,000), and for each 

simulation the delivery location, iMAX , and the actual payoff at that location, ( )Tm
MAXi , 

are stored for subsequent analysis. 

 

The above steps outline a basic algorithm that can be used to solve the optimal dispatch 

problem. Depending on the commodity being modeled it may be necessary to incorporate 

other variables associated with delivery of the cargo into the calculation of the reference 

prices. One possible extension of the reference price calculation is to introduce a piecewise 

linear transformation. For the LNG shipping example used in this article we define a piecewise 

linear curve of up to five segments. In Figure 1, each segment of the piecewise linear curve is 

defined by three parameters: an intercept, a slope and an upper limit (i.e. 
i

I  and 
i

S  for i = 

1,2,…,5; Ui = 1,…,4). The only exception to this is segment 5 where an upper limit does not 

exist (or it can be assumed the upper limit for this segment is infinity). To give an example of 

how the piecewise linear curve works, if the calculated reference price,
i

m , falls within the 

range (Uj-1, Uj], the new value of the reference price, i
m′ , would be 

 

 ijji mSIm ×+=′  (7) 
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Figure 1 : An Illustration of a piecewise linear transformation of the reference price 

In addition to the piecewise linear transformation, variables such as shipping costs and access 

costs per unit volume can be applied individually to the reference prices before they are 

compared in the decision calculation defined by equation (5).  

 

In  

Figure 2 we show a screenshot of how the inputs can be defined for the full reference price 

calculation as described above. For this example we have defined three locations, UK, USNE, 

and USGC. For each location a base commodity is specified, which define the unit and currency 

for that location. The reference price is then defined by entering the appropriate weights 

against the available commodities as defined in equation (1) or (2). In this example the user 

can choose from five possible commodity prices: NBP (UK National Balancing Point), HNG 

(Henry Hub), SOC (Southern California), TZ6 (TransCo Zone 6) and JCC (Japanese Crude 

Cocktail). For clarity we have assumed the price received in each region only depends on a 

single commodity price, either HNG or NBP. We have also defined a piecewise linear curve for 

the USGC location in this example to illustrate the inputs but also to ensure the reference price 

calculations for the USNE and USGC locations are different (since they both depend on HNG 

prices). Finally any additional Shipping or Access Point charges can be subtracted. 
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Figure 2 : Inputs for reference price specification  

Consistent with the seasonality discussion in our last article, for the forward curve simulation 

we can define a set of seasonal volatility factors for the NBP and HNG prices. In Figure 3 we 

illustrate the first three factors for each commodity for the first quarter (results for the other 

quarters are similar). 
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Figure 3: The first three volatility factors for each commodity for Q1 

 

The simulation of the forward prices also requires an initial forward curve. For this example we 

consider a range of decision and delivery dates covering 2008 and 2009, so the forward curves 

must cover this period also. The forward curves used are illustrated in Figure 4. Note that for 

ease of comparison we have converted the NBP prices from p/Them to USD/MMBtu using a 

currency conversion rate of 2 USD/GBP. 
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Figure 4 : Initial forward curves used for the simulation. 

 
There are a number of possible outputs that can be obtained from the forward curve simulation 

and subsequent analysis. The key output is the probability of each location being the optimal 

location for the specified decision date and lead time. In Figure 5 we illustrate the probabilities 

for a range of decision dates from Jan-2008 to Dec-2009, and for two different lead times. This 

example uses 10,000 simulations. 

 

Probabilities for Lead Time = 0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ja
n-
08

M
ar
-0
8

M
ay
-0
8

Ju
l-
08

S
ep
-0
8

N
ov
-0
8

Ja
n-
09

M
ar
-0
9

M
ay
-0
9

Ju
l-
09

S
ep
-0
9

N
ov
-0
9

Decision Date

P
ro

b
a

b
ili

ty

UK USNE USGC

Probabilities for Lead Time = 90 days
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Figure 5 : Output probabilities for each location and user defined lead time 
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The lead time of zero implies that the decision date and delivery date are identical, so the first 

panel in figure 5 illustrates the results if the decision were made on the simulated spot price at 

each location. While this assumption is not realistic for actual cargoes shipped (at least for our 

example of an LNG cargo) it is useful to calculate this result as it shows what the decision 

probabilities would be with perfect foresight. The second panel in figure 5 plots the results for 

a lead time of 90 days. Note that the x-axis is the decision date, so when comparing the two 

panels we need to keep this in mind – for example, in the right hand panel (i.e., using a 90 

day lead time) the peak in the probability for the UK destination with a decision date of Dec 

2008 corresponds to a decision date of Mar 2009 in the left hand plot with zero lead time. 

Apart from this horizontal shift it can be seen that the results for the two cases are similar in 

general shape, yet show significant differences at some points. To interpret these results 

consider the right hand plot. The lead time of 90 days is the time between when a decision is 

made on the destination for the cargo and the arrival at the destination. So again, if we 

consider the points at Dec 2008, the plot shows the probability of each location having the 

maximum payoff when the cargo is delivered to the destination in Mar 2009. In this case the 

UK has a very high probability of having the highest payoff, so a cargo that could be shipped at 

this time should be sent to the UK as opposed to one of the US locations. At other times of the 

year there is little difference between the locations, or the relationship is reversed. 

 

Clearly, as well as the probability of a location having the highest payoff, another important 

output from the model is the expected payoff (per unit volume), that is, the average value of 

the simulated payoffs, ( )Tm
MAXi  defined earlier. We would expect that if the lead time is zero 

then the payoffs will be a maximum since the decision for the optimal delivery location is 

based on the spot price itself. For any lead time greater than zero the payoffs will decrease 

since the decision is based on a simulated forward price which will generally be different from 

the eventual spot price. In other words, in the case of zero lead time the decisions will be 

perfect (since they are based on the actual payoff), but the further away the decision date is 

from the actual payoff the more imperfect the decisions will become. This is illustrated clearly 

in Figure 6. 
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Figure 6 : Expected payoffs for each delivery date. Note that for Lead Time = 90 the first 

delivery is in Apr 2008, since the decision dates used for this example start in Jan 2008. 

 

The results in Figure 6 show the expected payoff across all locations. From a more detailed 

analysis of the simulations we could calculate the conditional expected payoffs, that is, the 

expected payoff for each location conditioned on the cargo being shipped to that location. 

Additional outputs such as distributions of conditional or unconditional payoffs can also be 

derived from the simulation results. 

 

As a final point we note that the analysis described above involves calculating payoffs 

effectively based on the spot price. In reality the seller would often hedge some or all of their 

commodity shipment in the forward market. This adds another level of complexity to the 

model, but simulation using the MFMC framework is still an ideal approach to model the 

underlying prices. In particular a simulation based approach is ideal for modeling the 

distributions of results, which provides a straightforward mechanism for comparing the 

effectiveness of different hedging strategies. 
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