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This article discusses a general multi factor multi commodity (MFMC) model and the process 

for estimating parameters from historical data. Single factor models have a wide range of 

applicability in energy valuation and risk management, and are relatively simple to understand 

and parameterize. However, the simplicity of single factor models can be a double edged 

sword. While these models can capture much of the dynamics of real life processes in many 

circumstances, by definition they only use a small amount of the potential information 

available from the market. In particular one major drawback of single factor models is they 

imply that instantaneous changes in forward prices at all maturities are perfectly correlated. 

Increasingly, energy risk practitioners are attracted to modelling frameworks that avoid the 

above simplifications. Where enough data is available, a more general multi factor model can 

be used to capture extra information about the price dynamics and this is the modelling 

framework that we concentrate on in this article.  It is also relatively straightforward to extend 

such a multi factor model to incorporate multiple commodities. In the following we discuss a 

general MFMC model and describe the process of estimating parameters from historical data.  
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Figure 1: Forward curve for HNG during 2007 
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Figure 1 illustrates the historical evolution of a forward curve for Henry Hub natural gas (HNG) 

from 02-Jan-07 to 14-Dec-07. For clarity not all available curves in this period are shown. Each 

forward curve consists of 24 data points representing the next 24 monthly maturities, i.e. on 

each calendar date we plot the nearby contract, the second nearby, etc., out to the 24th nearby 

contract. The first few curves in January 08 therefore contain forward prices for contracts 

maturing each month from February 2007 to Jan 2009, while the last curves in December 07 

contain prices for contracts maturing from January 07 to December 09. 

 

One important observation from Figure 1 is that forward prices of different maturities are not 

perfectly correlated - the curves generally move up and down together, with the short end of 

the curve exhibiting more volatility than the long end, but they also change shape in 

apparently quite complex ways. In order to capture this complex interaction of different points 

along the forward curve we need more than a single factor of uncertainty. 

 

A general multi-factor model of the forward curve which can be represented by the following 

stochastic differential equation (SDE); 
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In this formulation ),( TtF  denotes a forward price for delivery at time T (the maturity date) 

recorded on date t, and there are n independent sources of uncertainty which drive the 

evolution of the forward curve.  Each source of uncertainty dzi(t) has associated with it a 

volatility function ),( Ttiσ  which determines by how much, and in which direction, that random 

shock moves each point of the forward curve. Note that it is possible to write an equation for 

the dynamics of the spot price that is consistent with this forward price dynamics – this is 

important in understanding how forward curve and spot dynamics are related, and explains the 

link between many popular implementations of equation (1) and some well know spot price 

models. We can integrate equation (1), set the maturity date equal to the current date (i.e., T 

= t), and apply a further differentiation, leading to the following SDE describing the evolution 

for the spot price, where F(t,t) = S(t) defines the spot price:  
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The term in square brackets, which defines the drift of the spot process, involves the 

integration over the Brownian motions, and hence the spot price process will, in general, be 

non-Markovian.  That is it will depend on all the random shocks which have occurred since 

start of the evolution at time zero. As a side note, for many energies such as the natural gas 

and electricity markets, seasonality in the forward price volatilities is an important feature in 

the evolution of the forward curve. One way to deal with this seasonality is to estimate 

volatility functions for each “season”, where the season can be defined by the user to 

segregate the data to represent for example ‘summer / winter’ or ‘summer / autumn / winter / 

spring’ . A more elegant approach is to extend equation (1) to incorporate seasonality in the 

volatility functions by representing the functions as the product of a time dependent spot 

volatility function and maturity dependent volatility functions.  The general equation (1) 

therefore becomes: 
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where )(tSσ  denotes the spot price volatility at time t and )( tTi −σ  the n maturity dependent 

volatility functions.  In this way, the maturity structure of the volatility functions is normalized 

by the spot volatility and the volatility functions then capture the correlation between forward 

prices at different maturities independently of any seasonal effects. For clarity in this article we 

have chosen not to model the seasonality in this way but it is a straightforward extension of 

the analysis that we present. 

 

Perhaps the main advantage of this forward curve modelling approach is the flexibility that the 

user has in choosing both the number and form of the volatility functions.  The volatility 

functions can be determined in one of two general ways; historically, from time series 

analysis; or implied from the market prices of options.  In this article we use the former 

method to illustrate estimation of the volatility functions. 

 

Using historical forward curve data one method that can be used to simultaneously determine 

both the number and form of the volatility functions that drive the dynamics of the forward 

curve is principal components analysis (PCA) or eigenvector decomposition of the covariance 

matrix of the forward prices returns.  The technique involves calculating the sample 

covariances between pairs of forward price returns in an historical time series to form a  
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covariance matrix.  The eigenvectors of the covariance matrix yield estimates of the factors 

driving the evolution of the forward curve. 

 

To illustrate the process of estimating the volatility functions from historical data we consider a 

single commodity with n factors1. After applying Ito’s lemma to equation (1) the forward curve 

dynamics is written as: 
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Equation (4) implies that changes in the natural logarithms of the forward prices with relative 

maturities mjj ,...,1, =τ  are jointly normally distributed. One can then compute an annualised 

sample covariance matrix of these forward prices (Σ) and decompose it into a series of 

eigenvectors and eigenvalues such that; 
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The columns of  are the eigenvectors.  The eigenvalues represent the variances of the 

independent “factors” which drive the forward points in proportions determined by the 

eigenvectors.  The discrete volatility functions are then obtained as 

 
ijiji vtt λτσ =+ ),(  (7) 

 

As an illustration of the outputs from this analysis in Figure 2 we show plots of the seasonal 

covariance matrices for HNG forward curve data. For convenience we have defined the seasons 

to cover January – March, April – June, July – September, and October – December, but the 

user can categorize the seasons by their own definitions. Note that in order to obtain robust  

 

 

                                                

1 See Clewlow and Strickland [2000] for a detailed example of estimating volatility functions in this way. 
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estimates we have used a longer history of forward curves (from Jan 05 to Dec 07) and we 

have used the first 50 maturities. 
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Figure 2: Covariance matrices for the Henry Hub natural gas forward curves for each 

season  

  

The covariance surfaces illustrated in Figure 2 are typical of those found in energy markets. As 

you would expect the largest covariance is observed between price movements at the short 

end of the forward curve. The surface will then typically decay to a lower value for the longer 

dated contracts.  The smoothness of the surfaces will depend on the amount of “noise” in the 

market, which may be due to illiquidity in contracts beyond a certain maturity, or may be due 

to changes in the market dynamics. 

 

Once the covariance matrices have been calculated the form of the volatility functions in 

equation (1) can be obtained as described above. In Figure 3 we plot the first three volatility 

functions for season 1 (the results for the other seasons are very similar). 
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Figure 3: Plot of the first three volatility functions for the HNG data for season 1 

 

The results shown in Figure 3 are typical of those found when analyzing energy market data. 

The first factor is positive for all maturities, indicating that a shock to the system will result in 

prices at all maturities to “shift” in the same direction. This is generally the most significant 

factor and is similar to the effect that would be seen in a single factor model. The second 

factor is a “tilt” which causes the short and long maturity contracts to move in opposite 

directions. The third factor is a “bending” factor, where the short and long ends of the curve 

move in the opposite direction to the middle of the curve. The second and third factors (and 

potentially others) are what distinguishes this approach from a single factor model, and allows 

the realistic dynamics of the forward curve to be captured in the model. 

 

As we are dealing with 50 contracts in this example there are 50 factors that can explain the 

variance of the evolution of the curve, however only a few of these will be significant for 

explaining the variation in the forward curve. The eigenvalues obtained in the previous step 

(see equation (6)) indicate the importance of the corresponding eigenvectors (volatility 

functions). In practice we find that 2 or 3 factors are usually sufficient to explain the evolution 

of the observed market data. For this example the eigenvalues for the 50 factors are shown in 

Figure 4.  
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Figure 4: Eigenvalues for the 50 volatility factors derived from the HNG forward 

curve data 

 

Clearly the first few factors have the largest contribution towards explaining the dynamics of 

the forward price. In fact for this example the first three factors explain 99.98% of the 

movement in the prices, so for modelling purposes it is easy to justify using only three factors 

to model the evolution of the forward price. 

 

Many of the problems faced by practitioners in the energy risk management arena require the 

joint modelling of multiple commodities. Spreads between one or more fuels and a power price 

for example are key determinants in the valuation of power plants and many derivative 

contracts. Efficient calculation of at-risk measures, such as value-at-risk, or cashflow-at-risk 

type measures can be achieved by the simultaneous joint evolution of all risk factors that 

underlie the contracts or assets that form the portfolio. The multi factor model in (1) can be 

generalised further to describe the joint forward curve dynamics of multiple commodities as 
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Where: 

c = 1,…,m represents each different from the historical data and 

i = 1,…,nc indexes the volatility functions for each commodity. 

 

In this model the correlations between commodities are defined by a correlation matrix for the 

Brownian motions. The correlations between the Brownian motions driving a particular 

commodity are zero, while the correlations between the Brownian motions driving different 

commodities represent the inter-commodity correlations. 

 

As with the case of estimating volatility functions, we can estimate the inter-commodity 

correlations from the joint historical forward curve data. For each commodity equation (4) 

describes the discrete time evolution of the forward curve in terms of the estimated volatility 

functions. This can be expressed in the following matrix representation: 

 

 εµ .
~

)()( Σ+= ttx  (9) 

 

Where 

)(tx  is the vector of changes in the natural logarithms of the forward prices for each 

maturity at the specified time step 

)(tµ  is the vector of drift terms over the time step; 

Σ
~
 is the matrix of discrete volatility function terms; 

ε  is the unknown vector of standard normally distributed random shocks 

 

Equation (9) can be solved to give estimates of the historical Brownian shocks which generated 

the evolution of the forward prices. We repeat this process for each commodity to obtain a 

time series of vectors ε  for each commodity. The sample correlation matrix of the random 

shocks can then be calculated to give the inter commodity correlations for use in a multi 

commodity simulation. 

 

As an example we consider the correlation between the HNG forward prices used above, and 

NBP natural gas forward prices covering the same period. The resulting covariance matrix is 

shown in Table 1, with a plot of the data in Figure 5. 
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  N1 N2 N3 N4 N5 N6 H1 H2 H3 H4 H5 H6 

N1 1 0 0 0 0 0 0.13 0.08 

-

0.01 0.03 0.06 

-

0.05 

N2 0 1 0 0 0 0 0.07 0.04 0.06 0.02 

-

0.04 0.10 

N3 0 0 1 0 0 0 

-

0.02 

-

0.02 

-

0.08 0.05 0.01 

-

0.04 

N4 0 0 0 1 0 0 0.02 0.02 

-

0.05 

-

0.04 0.00 

-

0.17 

N5 0 0 0 0 1 0 

-

0.06 0.04 

-

0.03 0.04 0.01 

-

0.06 

N6 0 0 0 0 0 1 

-

0.02 0.01 0.04 0.08 

-

0.02 

-

0.02 

H1 0.13 0.07 

-

0.02 0.02 

-

0.06 

-

0.02 1 0 0 0 0 0 

H2 0.08 0.04 

-

0.02 0.02 0.04 0.01 0 1 0 0 0 0 

H3 

-

0.01 0.06 

-

0.08 

-

0.05 

-

0.03 0.04 0 0 1 0 0 0 

H4 0.03 0.02 0.05 

-

0.04 0.04 0.08 0 0 0 1 0 0 

H5 0.06 

-

0.04 0.01 0.00 0.01 

-

0.02 0 0 0 0 1 0 

H6 

-

0.05 0.10 

-

0.04 

-

0.17 

-

0.06 

-

0.02 0 0 0 0 0 1 

 

Table 1: Covariance matrix for HNG and NBP Brownian motions 
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Figure 5: Covariance matrix of the Brownian motions of HNG and NBP forward prices 

 

or this example we have considered six volatility factors for each commodity. The headers in 

Table 1 and the horizontal axes label the volatility factors: the factors for NBP are denoted by 

N1, N2, …, N6, and for HNG they are denoted by H1, H2, …, H6.  As noted above, the 

covariance between the Brownian motions of each commodity is zero while the non-zero 

covariances in the off-diagonal blocks represent the correlations between the Brownian 

motions driving the different commodities. As noted above the correlations between the 

Brownian motions are used as input to a simulation model based on equation (8) to generate 

appropriately correlated normally distributed random shocks. 

 

For single commodity applications the model described in equation (1) has a number of 

desirable analytical properties – see for example Clewlow and Strickland [2000] where we 

detail the analytical pricing of European options on both the spot asset and futures contracts. 

For most applications, however, Monte Carlo simulation is the numerical technique that the 

majority of practitioners turn to.  One important real world application for a MFMC model is in 

determining the optimal location for shipping a cargo, and in the next article we will illustrate 

the use of the MFMC model for this type of application.  
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