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Introduction to Energy Derivatives
and Fundamentals of Modelling
and Pricing

1.1 Introduction to Energy Derivatives

Energy markets around the world are under going rapid deregulation, leading to more
competition, increased volatility in energy prices, and exposing participants to poten-
tially much greater risks. Deregulation impacts both consumers and producers and has
lead to a heightened awareness of the need for risk management and the use of
derivatives for controlling exposure to energy prices. However, this is not the only
source of the development of risk management products. Investment banks are being
drawn into the area as they look for new markets in which to operate. There is also an
increasing number of power marketers entering the market and companies like Enron'
are establishing themselves in a role which might be described as an ‘energy investment
bank’. This combination of the two different sides of the market, along with the sheer
size of the market at the sales level, has the potential to make energy derivatives one of
the fastest growing of all derivatives markets”.

For many market participants, energy derivatives appear to be a new phenomenon.
Although it is true that traded derivatives are a relatively new concept in the energy
markets, the structures have been around for centuries and contracts with derivative
characteristics have existed in energy markets for decades. For example, options have
been embedded in supply and purchasing agreements which have traditionally offered a
high degree of flexibility in terms of price, volume, timing and location of delivery.
Although there is now a realisation that these contracts should be priced to reflect the
optionality in such agreements, they have been trading for many years.

There are many contracts that enable the user to manage their exposure to energy
prices, with derivatives often providing the simplest and most flexible solutions for
precise risk management.

A derivative security can be defined as a security whose payoff depends on the value of

' http://www.enron.com
2 Readers interested in the market growth and the development of competitive electricity markets are referred
to Kaminski (1997) and Masson (1999).
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other more basic variables®. The simplest types of derivatives are forward and futures
contracts.

Futures and Forward Contracts

A futures contract is an agreement to buy or sell the underlying asset in the spot market
(often called the spot asset) at a predetermined time in the future for a certain price,
which is agreed today. Futures contracts are standardised, in terms of the future date,
amount traded, etc. and can be retraded through time on a futures exchange. Forward
contracts are also agreements to transact on fixed terms at a future date, but these are
direct agreements between two parties. Although forwards and futures are similar
contracts involving an agreement to buy or sell on a certain date for a certain price,
important differences exist. Firstly, as we have just seen, futures are exchange standar-
dised contracts, whereas forward contracts trade between individual institutions.
Secondly, the cash flows of the two contracts occur at different times — futures are
daily marked to market with cashflows passing between the long and the short position
to reflect the daily futures price change, whereas forwards are settled once at maturity®.
Despite these differences, if future interest rates are known with certainty then futures
and forwards can be treated as the same for pricing purposes and we will, for the most
part, use the terms interchangeably.

There are two sides to every forward contract. The party who agrees to buy the asset is
said to hold a long forward position, whilst the seller is said to hold a short forward
position. At the maturity of the contract (the ‘forward date’) the short position delivers
the asset to the long position in return for the cash amount agreed in the contract —
which is often called the delivery price.

If T represents the contract maturity date, then mathematically this long forward
payoff can be expressed as S — K where St represents the asset price at time 7, and K
represents the agreed delivery price. Figure 1.1 shows the profit and loss profile to the
long forward position at the maturity of the contract. The payoff can obviously be
positive or negative, depending on the relative values of Sy and K. The short position, by
definition, has the opposite payoff to the long position (i.e. —S + K) as every time the
long position makes a profit, a loss is suffered by the short, and vice versa. Since the
holder of a long forward contract is guaranteed to pay a known fixed price for the spot
asset, futures and forwards can be seen as insurance contracts providing protection
against the price uncertainty in the spot markets.

A straight-forward arbitrage relationship means that the forward price must be equal
to the cost of financing the purchase of the spot asset today and holding it until the
forward maturity date®. Let F represent the price of a forward contract on the spot asset

3 Derivatives are often referred to as contingent claims as the payout to the security (often referred to as the
maturity payoff), and hence value, is contingent on other events.

* For credit purposes, some forward contracts are also marked to market on a regular basis.

5 See chapter 4 for more details.
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FIGURE 1.1 Payoff to Long Forward Position

that is currently trading at S. If the maturity date of the contract is 7, ¢ represents the
cost of holding the spot asset (which includes the borrowing costs for the initial purchase
and any storage costs), and 6 the continuous dividend yield paid out by the underlying
asset, then the price of a forward contract, at current time ¢, and the spot instrument on
which it is written are related via the ‘cost of carry’ formula®;

F = Sele 9T~ (1.1)

The continuous dividend yield can be interpreted as the yield on an index for index
futures, as the foreign interest rate in foreign exchange futures contracts, and as the
convenience yield for various energy contracts’.

Options Contracts

Options contracts are the second cornerstone to the derivatives market. There are two
basic types of options. A call option gives the holder the right, but not the obligation, to
buy the spot asset on or before a predetermined date (the maturity date) at a certain price
(the strike price), which is agreed today. Figure 1.2 graphs the payoff to the holder of
such an option.

Options differ from forward and futures contracts in that a payment, usually at the
time the contract is entered into, must be made by the buyer — this is the option price or
® T — tis measured in years.

7 See Chapter 6 for a discussion of convenience yields in energy and commodity markets.
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FIGURE 1.2 Payoff to Call Option

premium. At the maturity date, for spot asset prices below the agreed strike price
(denoted by K), the holder lets the option expire worthless, forfeits the premium, and
buys the asset in the spot market. For asset prices greater than K, the holder exercises the
option, buying the asset at K and has the ability to immediately make a profit equal to
the difference between the two prices (less the initial premium). Therefore, the holder of
the call option essentially has the same positive payoff as the long forward contract, but
without the downside, resulting in a so-called ‘dog leg’ payoff profile. The payoff to a call
option can be described mathematically as follows:

max(0, S — K) (1.2)

The second basic type of option, a put option, gives the holder the right, but not the
obligation, to sell the asset on or before the maturity date at the strike price. Figure 1.3
shows the payoff profile to the holder of a put option. Mathematically, the payoff for a
put option can be written:

max(0,K — S) (1.3)

One of the difficulties experienced by newcomers to the derivatives market is the amount
of terminology involved. As we have already seen, the date specified in the contract is
known as the maturity date, but it is also known as the expiration, exercise, or strike
date. The strike price is often referred to as the exercise price. Options are also classified
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FIGURE 1.3 Payoff to Put Option

with respect to their exercise conventions. European options can only be exercised on the
maturity date itself, whereas American style options can be exercised at any time up to
and including the expiration date.

As with forwards, there are two sides to every option contract. One side has bought
the option and has the long position, whilst the other side has sold (or written) the option
and has taken a short position. Figure 1.4 shows the four possible combinations of
terminal payoffs for long and short positions in European call and put options with
maturity date 7.

The futures and options of this section describe the basic building blocks of all
derivative securities and the principals are consistent across all underlying markets.
However, derivative structures in energy markets exhibit a number of important
differences from other underlying markets. The differences arise because of the complex
contract types that exist in the energy industry as well as the complex characteristics of
energy prices. Both the type of derivatives that trade, and the modelling needed to
capture the evolution of prices, reflect these differences. For example, many contracts in
the energy industry are based on averages (often weekly or monthly in the oil industry
and hourly or less in the electricity markets) of prices and this has led to the wide
acceptance of so-called Asian or average price options®. Basis risk, widely defined to

8 See chapter 5 for further details on Asian options.
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FIGURE 1.4 Terminal Payoffs for European Options

mean the difference between two different prices, is very important in energy markets as
production processes often involve the conversion of one energy (say natural gas) into
another (electricity) thus exposing the company to the price differential. This has lead to
the development of a wide variety of spread options. The complications extend to
modelling of the price dynamics. For example, large variations in the cost of electricity
generation and high demand variability contribute to high price volatility and jumps in
prices. High levels of seasonality exhibited by energies are also important to capture’.

1.2 Fundamentals of Modelling and Pricing

The modern theory of option pricing is possibly one of the most important contributions
to the whole area of financial economics. The breakthrough came in the early 1970’s with
work by Fisher Black, Myron Scholes and Robert Merton (Black and Scholes (1973),

® See Chapter 4 for a description of types of contract provision that cause embedded options to take on
complicating characteristics and their impact on pricing. See also Kaminski (1997).
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Merton (1973)). The Black-Scholes-Merton (BSM) modelling approach proved not only
important for providing a computationally efficient and relatively easy way of pricing the
then recently developed exchange traded equity options in Chicago, but also for
demonstrating the principal of no-arbitrage, risk neutral, valuation. Their analysis
showed that the payoff to an option could be perfectly replicated with a continuously
adjusted holding in the underlying asset and the risk free bond. Since the risk of writing
an option can be completely eliminated the risk appetites or preferences of market
participants are irrelevant to the valuation problem, and we can assume they are risk
neutral. In such a world, all assets earn the riskless rate of interest, thus the actual
expected return on the asset does not appear in the Black-Scholes formula.

In many energy markets the concept of being able to perfectly replicate options by
continuously trading the underlying asset is unrealistic. For example, spot electricity
cannot be easily stored'® and therefore a continuously adjusted position is not possible.
Similar arguments can be applied, albeit in a less extreme sense to many other spot
energies. However, many energy derivatives actually depend on futures prices rather
than the spot price and futures can be used to replicate options positions allowing the
application of the risk neutral pricing approach. In cases where it is not reasonable to
apply risk neutral pricing we can argue that the risk neutral price provides a good
reference with which to compare other pricing methods. An alternative and useful
‘insurance’ based approach is to calculate the expected payoff of the option under a
model for the actual behaviour or real-world measure (as opposed to the risk neutral
measure) of the market prices. The methods we describe in this book can also be used in
this way. Finally, as a writer of options we may wish to price them on the basis of our
expected cost of hedging the option given our access to hedging markets and manage-
ment systems. This can also be done using the models and methods which we describe.

In this section we look at a number of different methodologies that have been
developed for pricing options. We start with approaches that have been developed
under the BSM assumptions of costless trading in continuous time, infinite divisibility of
the underlying asset, a non-dividend paying asset, constant interest rates and constant
volatility. From the perspective of this chapter, however, the most important assumption
in the BSM model is the mathematical description of how asset prices evolve through
time. This is the well-known Geometric Brownian Motion (GBM) assumption where
proportional changes in the asset price, denoted by S, are assumed to have constant
instantaneous drift, u, and volatility, 0. The mathematical description of this property is
given by the following stochastic differential equation'';

dS = pSdt 4 0Sdz (1.4)

10 Electricity can be stored by hydroelectric schemes by using it to pump water into the reservoir, the electricity
can then be recovered by releasing the water through the turbines. Electricity can also be indirectly stored by
generators in the form of the fuel used to generate it.

' Most models of asset price behaviour for pricing derivatives are formulated in a continuous time framework
by assuming a stochastic differential equation describing the stochastic process followed by the asset price.
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Here dS represents the increment in the asset price process during a (infinitesimally)
small interval of time dt, and dz is the underlying uncertainty driving the model and
represents an increment in a Weiner process during dz. The risk-neutral assumption
implies that the drift can be replaced by the riskless rate of interest (i.e. 4 =r). Any
process describing the stochastic behaviour of the asset price will lead to a characterisa-
tion of the distribution of future asset values and the assumption in equation (1.4)
implies that future asset prices are lognormally distributed, or alternatively, that returns
are to the asset are normally distributed.

Let C represent the value of any derivative security (a call or a put, a forward, or any
of the other more complicated derivatives we look at throughout this book). The
arguments of BSM allow for the derivation of the following partial differential equation
describing the evolution of the derivative price through time,

ocC oc 1 , ,0°C
oS —= =

Stz

ot a5 275 a2 =€ (1.3)

The value of any derivative whose payoff is contingent on the level of the asset price
following equation (1.4), and time, must satisfy this equation. In order to evaluate the
prices of specific options (for example, European call and put options) this equation
must be solved with the appropriate boundary conditions — given as the option maturity
payoff (i.e. Cr = max(0,Sy — K) for a European call and C; = max(0,K — S7) for a
put). For a European option equation (1.5) can be solved in a variety of ways, yielding
the familiar Black-Scholes formula (here for a call evaluated at time ),

C(t) = SN(dy) — Ke """ N(d,) (1.6)
where
g - In(S/K) + (r+1o>)(T — 1)
' ovT —t
dz = d] —oVT —1t

and where the parameters S, K, r, ¢, T, and o have been previously defined, In(.) is the
natural logarithm and N(.) is the standard cumulative normal distribution function. The
use of the risk free rate for discounting is based on the notion of risk neutral valuation.
One of the qualities that has led to the enduring success of the Black-Scholes model is its
simplicity. The inputs of the model are defined by the contract being priced or are
directly observable from the market. The only exception to this is the volatility
parameter and there is now a vast amount of published material in the finance literature
for deriving estimates of this figure either from historical data or as implied by the
market prices of options.

Although the pricing formula (1.6) was originally applied to equity markets, some of
the rigid assumptions have been relaxed by later authors, extending the model to other
markets. For example, Merton (1973) extended the model by firstly showing that the
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discounting in the model could be done in terms of a pure discount bond of the same
maturity as the option, thus taking into account non-constant interest rates. A pure
discount bond is defined as a bond which pays one unit of cash at its maturity date only.
If we represent with, P(¢,T), the price at time ¢ of a pure discount bond with maturity
date T, the BSM formula can be written;

C(t) = SN(dy) — KP(t, T)N(d>) (1.7)

Merton also showed how a non-constant, but deterministic, volatility can be handled by
using the average volatility over the life of the option. Another, widely used, relaxation of
the original formula takes into account assets that pay a constant proportional dividend.
Assets of this kind are handled by reducing the expected growth rate of the asset by the
amount of the dividend yield. If the asset pays a constant proportional dividend at a rate 8,
over the life of the option, then we can use the original Black-Scholes call formula (1.6)
with the adjustment that the parameter S is replaced by the term Se~7-9. This
adjustment has been applied to value options on broad-based equity indices as well as
options on foreign exchange rates — see Garman and Kohlhagen (1983) for the latter'?.

In practice it is now well established that the Black-Scholes-Merton model is used not
with the constant parameter volatility assumption of equation (1.6) but in conjunction
with what is termed ‘implied volatility smiles’. This is the practice of adjusting the
volatility which is entered into the Black-Scholes formula for options which are away from
the money'. As we shall see in section 3.3, volatility smiles correspond to the probability
distribution implied in option prices differing from the lognormal distribution implied by
the GBM assumption of equation (1.4), resulting in options being priced at different levels
of volatility. In chapter 2 we show that smiles can be introduced into models by
incorporating stochastic volatility and jumps. In addition to varying volatility dependent
on strike price, traders frequently adjust volatility dependent on the maturity of the option
often resulting in the smile becoming less pronounced as the option maturity increases.

Although it is possible to obtain closed form solutions such as equation (1.6) for
certain derivative pricing problems there are many situations when analytical solutions
are not obtainable and numerical techniques need to be applied. Examples that we will
see in this book include American options, and other options where there are early
exercise opportunities, ‘path dependent’ options with discrete observation frequencies,
models that incorporate jumps, and models dependent on multiple random factors. The
description of two of these techniques is the subject of the next section.

1.3 Numerical Techniques

In this section we describe two numerical techniques which are most commonly used by
practitioners to value derivatives in the absence of closed-form solutions. Although we
restrict our attention to (trinomial) tree building and Monte Carlo simulation, other

12 The proportional dividend is interpreted as the risk free rate on the foreign currency in options of this type.
13 See section 3.3 for a discussion of volatility smiles in energy markets.
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techniques such as finite difference schemes (see Clewlow and Strickland (1998)),
numerical integration, finite element methods, and others, are also sometimes used by
practitioners. However, these methods require more advanced expertise in numerical
techniques. For both of the techniques we outline it is possible to price not only
derivatives with complicated payoff functions dependent on the final energy price, but
also derivatives whose payoff is determined also by the path the underlying price follows
during its life.

Monte Carlo simulation provides a simple and flexible method for valuing complex
derivatives for which analytical formulae are not possible. The method can casily deal
with multiple random factors; for example, options on multiple energy prices or models
with random volatility, convenience yield, or interest rates. Monte Carlo simulation can
also be used to value complex path dependent options, such as average rate, barrier, and
lookback options, and also allows the incorporation of more realistic energy price
processes, such as jumps in prices and more realistic market conditions such as the
discrete fixing of exotic path dependent options.

For many American style options early exercise can be optimal depending on the level
of the underlying energy price. It is rare to find closed-form solutions for prices and risk
parameters of these options, so numerical procedures must again be applied. However,
using Monte Carlo simulation for pricing American style options is difficult. The problem
arises because simulation methods generate trajectories of state variables forward in time,
whereas a backward dynamic programming approach is required to efficiently determine
optimal exercise decisions for pricing American options. Therefore, binomial and
trinomial trees are usually used by practitioners for pricing American options'*.

1.3.1 The Trinomial Method

The binomial model of Cox, Ross and Rubinstein (1979) is a well-known alternative
discrete time representation of the behaviour of asset prices to GBM. This model is
important in several ways. Firstly, the continuous time limit of the proportional
binomial process is exactly the GBM process. Second, and perhaps most importantly,
the binomial model is the basis of the dynamic programming solution to the valuation of
American options'>. Although binomial trees are used by many practitioners for pricing
American style options, we and many other practitioners prefer trinomial trees. The
trinomial tree has a number of advantages over the binomial tree. Because there are three
possible future movements of the asset price over each time period, rather than the two
of the binomial approach, the trinomial tree provides a better approximation to a
continuous price process than the binomial tree for the same number of time steps. Also,

14 Tilley (1993), Li and Zhang (1996), Broadie and Glasserman (1997a, 1997b) and Clewlow and Strickland
(1998), amongst others have described methods of extending Monte Carlo simulation to the valuation of
options with early exercise opportunities. In chapter 8 we show how Monte Carlo simulation can be applied
to American options in conjunction with a tree based approach.

15 See Chapter 2 of Clewlow and Strickland (1998) for an in-depth discussion of implementing the binomial
method.

10
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the trinomial tree is easier to work with because of its more regular grid and is more
flexible, allowing it to be fitted more easily to market prices of forwards and standard
options, an important practical consideration.

For an asset paying a continuous dividend yield, the stochastic differential equation
for the risk neutral GBM model is given by equation (1.4) where the drift is replaced by
the difference between the riskless rate and the continuous yield:

dS = (r — 6)Sdt + oSdz (1.8)

In the following we will find it more convenient to work in terms of the natural logarithm
of the spot price, x = In(S), and under this transformation we have the following process
for x:

dx = vdt + odz (1.9)

where v =r — 6 — %02. Consider a trinomial model of the asset price in which, over a
small time interval Az, the asset price can increase by Ax (the space step), stay the same
or decrease by Ax, with probabilities p,, p,,, and p, respectively. This is depicted in terms
of x in figure 1.5.

The drift and volatility parameters of the asset price are now captured in this
simplified discrete process by Ax, p,, p,, and p,. It can been shown that the space
step cannot be chosen independently of the time step, and that a good choice is
Ax = ov/3At. The relationship between the parameters of the continuous time process
and the trinomial process is obtained by equating the mean and variance over the time
interval At and requiring that the probabilities sum to one, i.e.:

E[Ax] = p,(AX) + p(0) + pa(—Ax) = vAt (1.10)
X + Ax
R
P
X X
R
X—=AX

< At

FIGURE 1.5 Trinomial Model of an Asset Price
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E[sz] :pu(sz) +pm(0) +pd(Ax2> = UZAZ + l/zAlz (11 1)
PutDPmtDPa= 1 (112>

Solving equations (1.10) to (1.12) yields the following explicit expressions for the
transitional probabilities;

2 At + 12N VAL
o2 At + 12PAL2
At 4+ 12PAP vAt
_eatrmralr val
pd2< Ax? Ax) (1.15)

The single period trinomial process in figure 1.5 can be extended to form a trinomial tree.
Figure 1.6 depicts such a tree.

N, N

N,N-1

N, —N+2

N,—N+1

FIGURE 1.6 A Trinomial Tree Model of an Asset Price
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Let i denote the number of the time step and j the level of the asset price relative to the
initial asset price in the tree. If S;; denotes the level of the asset price at node (i, ) then we
have ¢t =1t; = iAt, and an asset price level of Sexp(jAx). Once the tree has been
constructed we know the spot price at every time and every state of the world consistent
with our original assumptions about its behaviour process, and we can use the tree to
derive prices for a wide range of derivatives. We will illustrate the procedure with reference
to pricing a European and American call option with strike price K on the spot price.

We represent the value of an option at node (i, /) by C;;. In order to value an option we
construct the tree representing the evolution of the spot price from the current date out
to the maturity date of the option — let time step NV correspond to the maturity date in
terms of the number of time steps in the tree, i.e. T = NAt. The values of the option at
maturity are determined by the values of the spot price in the tree at time step N and the
strike price of the option;

Cy,;=max(0,Sy; —K); j=—N,....N (1.16)

It can be shown that we can compute option values as discounted expectations in a risk
neutral world'®, and therefore the values of the option at earlier nodes can be computed
as discounted expectations of the values at the following three nodes to which the asset
price could jump:

Cij= efl‘At(Pqu,jH + PmCis1,j + PaCit1,j-1) (1.17)

where e~"2! is the single period discount factor. This procedure is often referred to as
‘backwards induction’ as it links the option value at time i to known values at time i + 1.
The attraction of this method is the ease with which American option values can be
evaluated. During the inductive stage we simply compare the immediate exercise value of
the option with the value if not exercised, computed from equation (1.17). If the
immediate exercise value is greater, then we store this value at the node, i.e.:

Cij= maX{e_rm(}’uCiH,_/H +PmCisi; +PaCii1 j1)Sij — K} (1.18)

This method also gives us the optimal exercise strategy for the American option since for
every possible future state of the world, i.e. every node in the tree, we know whether we
should exercise the option or not. The value of the option today is given by the value in
the tree at node (0,0), Cy . Although we have so far discussed only the valuation of a
simple derivative using the tree structure, it is also possible to price many path dependent
options. In section 7.5 we explain how path dependent options can be priced in an energy
spot price tree fitted to the observed forward curve.

The standard option hedge sensitivities: delta, gamma and theta, can be calculated
straightforwardly using the tree since they can be approximated by finite difference
ratios. Vega and rho can be computed by re-evaluation of the price for small changes in

16 See Clewlow and Strickland (1998) for an in-depth discussion of the implementation of trinomial trees for
derivative pricing.
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the volatility and interest rate respectively (see section 7.2.5 below and section 3.8 of
Clewlow and Strickland (1998)).

1.3.2 Monte Carlo Simulation!’

Monte Carlo simulation is easy to implement, works for a wide range of path dependent
options, and is suitable for handling multiple stochastic factors. This last property
implies that it is straightforward to add multiple sources of uncertainty such as
stochastic volatility or random jumps to the basic model as well as valuing derivatives
whose payoff depends on some function of two or more energy prices'®.

As we have already seen, in general, the present value of an option is the expectation of
its discounted payoff. We can obtain an estimate of this expectation by computing the
average of a large number of discounted payoffs computed via Monte Carlo simulation.
Originally applied to the pricing of financial instruments by Boyle (1977), the Monte
Carlo technique involves simulating the possible paths that the asset price can take from
today until the maturity of the option.

We can discretise the transformed GBM process represented in equation (1.8) in the
following way:

Xepar = X+ (VAL + 0(z00 — 21)) (1.19)
Alternatively, in terms of the original asset price we have the discrete form
Siiar = S;exp(VAL +0(z a0 — 21)) (1.20)

Equations (1.19) or (1.20) can be used to simulate the evolution of the spot price through
time. The change in the random Brownian motion, z,, o, — z,, has a mean of zero and a
variance of Az. It can therefore be simulated using random samples from a standard
normal multiplied by v/At, i.e. v/Ate where e ~ N(0, 1). In order to simulate the spot
price we divide the time period over which we wish to simulate, [0,7], into N intervals

such that At = T/N, t; = iAt,i = 1, ..., N. Using, for example, equation (1.20) we have
S, =S, exp(vAt + oV Atg;) (1.21)

It is important to note that, since the drift and volatility terms do not depend on the
variables S and ¢, the discretisation is correct for any time step we choose. This enables us
to jump straight to the maturity date of the option in a single time step, if the payoff to
the derivative is only a function of the terminal asset value, and does not depend on the
path taken by the asset during the life of the option. Repeating this process N times,
choosing ¢; randomly each time, leads to one possible path for the spot price. Figure 1.7
illustrates the result of repeating this single path simulation one thousand times.

S =100,r — & =0.05,0 = 0.30, Ar = 1/(365 x 24).

17 This section is based on Chapter 4 of Clewlow and Strickland (1998).
"% For example a crack spread that pays the difference between gas and electricity prices.
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Asset Price

Time

FIGURE 1.7 lllustration of 1000 Simulated GBM Paths

At the end of each simulated path the terminal value of the option (C7r) is evaluated. Let

Cr,; represent the payoff to the contingent claim under the j " simulation. For example,

for a standard European call option the terminal value is given by;
Cr,; = max(0, S7; — K) (1.22)

Each payoff is discounted using the simulated short-term interest rate sequence,

T
Coj = exp<—£ rudu> Cr, (1.23)

In the case of constant or deterministic interest rates equation (1.23) simplifies to
CO,j == P(O, T)CT/
This value represents the value of the option along one possible path that the asset can

follow. The simulations are repeated many (say M) times and the average of all the
outcomes is taken to compute the expectation, and hence option price;

N .
CO:M/:Z]COJ (1.24)
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Therefore C, is an estimate of the true value of the option, Cy, but with an error due to
the fact that it is an average of randomly generated samples and so is itself random. In
order to obtain a measure of the error we estimate the standard error SE(.) as the sample
standard deviation, SD(.), of Cy; divided by the square root of the number of samples;
SE(Cy) = 2P0 (Co,)
VM

where SD(C, ;) is the standard deviation of Co;

(1.25)

1 & ;
SD(Co.) = | 77— 2 (Coj = Co)’
=

The biggest criticism of Monte Carlo methods concerns the speed with which derivative
values can be evaluated. It is not unknown for the technique to take many hours to
return a price that is sufficiently accurate, due to the number of simulations that have to
be performed. However, a number of authors, including Kemna and Vorst (1990),
Clewlow and Carverhill (1994) and Clewlow and Strickland (1997, 1998), have proposed
methods to speed up the process. These techniques are known as variance reduction
techniques, as their aim is to reduce the variance of the estimate obtained via the
simulations. Further variance reduction techniques involve the implementation of quasi-
random sequences (see for example Joy, Boyle, and Tan (1996)). Another criticism of
Monte Carlo is its perceived inability to handle American options. However, we discuss
in Chapter 8 how American options can be priced using a combination of tree and
simulation techniques.

1.4 Summary

In this chapter we have introduced energy derivatives, describing some simple structures,
and outlined the differences between energy and other underlying markets. We have
presented an overview of the fundamental pricing principals that are applied to
derivative valuation in a Black-Scholes-Merton world, and described two numerical
procedures often implemented by practitioners to evaluate derivative prices and risk
sensitivities. In the following chapter we look at the applicability of GBM for modelling
energy price processes and describe other price processes often applied to energy price
movements.
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